Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS Sustainable Chemistry and Engineering ; 2023.
Article in English | Scopus | ID: covidwho-2294964

ABSTRACT

Atmospheric water harvesting (AWH) is a potentially promising small-scale approach to alleviate the water crisis in arid or semiarid regions. Inspired by the asymmetric structure of tillandsia leaves, a plant species native to semiarid regions, we report the development of a bioinspired composite (BiC) to draw moisture for AWH applications. With the advent of the post-COVID era, the nonwoven materials in used masks are discarded, landfilled, or incinerated along with the masks as medical waste, and the negative impact on the environment is inevitable. The nonwoven sheet has porosity, softness, and certain mechanical strength. We innovatively developed BiCs, immobilizing hygroscopic salt with a nonwoven mask for fast vapor liquefaction and using a polymer network to store water. The resulting BiC material manages to achieve a high-water adsorption capacity of 1.24 g g-1 under a low-moderate humidity environment and a high-water release ratio of ca. 90% without the use of photothermal materials, while maintaining high structural integrity in cyclic testing. © 2023 American Chemical Society.

2.
Ann Biomed Eng ; 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2257378

ABSTRACT

Face masks have been proven to be medicine's best public health tool for preventing transmission of airborne pathogens. However, in situations with continuous exposure, lower quality and "do-it-yourself" face masks cannot provide adequate protection against pathogens, especially when mishandled. In addition, the use of multiple face masks each day places a strain on personal protective equipment (PPE) supply and is not environmentally sustainable. Therefore, there is a significant clinical and commercial need for a reusable, pathogen-inactivating face mask. Herein, we propose adding quaternary poly(dimethylaminohexadecyl methacrylate), q(PDMAHDM), abbreviated to q(PDM), to existing fabric networks to generate "contact-killing" face masks-effectively turning cotton, polypropylene, and polyester into pathogen resistant materials. It was found that q(PDM)-integrated face masks were able to inactivate both Gram-positive and Gram-negative bacteria in liquid culture and aerosolized droplets. Furthermore, q(PDM) was electrospun into homogeneous polymer fibers, which makes the polymer practical for low-cost, scaled-up production.

SELECTION OF CITATIONS
SEARCH DETAIL